
Parsing	VI
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP

P1	Shout-outs	
§ Saksham Singhal -- implemented	pseudo-tries.	Used	implicit	caching	(stored	the	most	

frequent	n-grams	on	top	of	hash	tables)	and	explicit	caching.
§ Soumya Wadhwa,	Tejas Nama	-- approximated	by	ignoring	all	trigrams	with	count	1.	

That	dropped	BLEU	score	by	less	than	0.1	only	but	freed	half	the	memory!	
§ Craig	Stewart	-- rehash	annealing	idea.	Made	resizing	factor	and	load	factor	change	

with	every	rehash	to	converge	to	0.9	load	factor	to	minimize	wasted	space.
§ Griffin	Thomas	Adams	-- Built	a	"waterfall"	tiered	cache	system
§ Dean	Alderucci -- Built	a	class	to	pack	data	types	of	arbitrary	size	into	an	array	of	longs.	

Built	a	custom	implementation	of	log	that	ran	faster.
§ Robin	Jonathan	Algayres – Context	trie!
§ Raghuram Mandyam Annasamy -- Used	database	inspired	sharding technique	on	keys
§ Xianyang Chen	-- Compressed	hash	table	and	did	smarter	binary	search	by	indexing	

chunks	with	the	same	last	word
§ Aldrian Obaja -- Implemented	NestedMap,	achieving	792	MB	of	memory.
§ Other	things	many	people	did -- LRU	caching,	packing	multiple	values	(counts	and	

context	fertilites)	into	a	single	long,	binary	search	instead	of	hash	table.

Grammar	Projections

NP	→	DT	@NP

Coarse Grammar Fine Grammar

DT

NP

JJ

@NP	

@NPNN

@NP

NN

DT^NP

NP^VP	

JJ^NP

@NP^VP[DT]	

@NP^VP[…,NN]	NN^NP

@NP^VP[…,JJ]	

NN^NP

NP^VP	→	DT^NP	@NP^VP[DT]

Note:	X-Bar	Grammars	are	projections	with	rules	like	XP	→	Y	@X	or	XP	→	@X	Y	or	@X	→	X

Efficient	Parsing	for
Structural	Annotation

Coarse-to-Fine	Pruning

… QP NP VP …coarse:

fine:

E.g.	consider	the	span	5	to	12:

< thresholdP (X|i, j, S)

Coarse-to-Fine	Pruning

For	each	coarse	chart	item	X[i,j],	compute	posterior	probability:

… QP NP VP …coarse:

fine:

E.g.	consider	the	span	5	to	12:

< threshold
↵(X, i, j) · �(X, i, j)

↵(root, 0, n)

Computing	Marginals
↵(X, i, j) =

X

X!Y Z

X

k2(i,j)

P (X ! Y Z)↵(Y, i, k)↵(Z, k, j)

Computing	Marginals
�(X, i, j) =

X

Y!ZX

X

k2[0,i)

P (Y ! ZX)�(Y, k, j)↵(B, k, i)

+
X

Y!XZ

X

k2(j,n]

P (Y ! XZ)�(Y, i, k)↵(Z, j, k)

Efficient	Parsing	for
Lexical	Grammars

Lexicalized	Trees

§ Add	“head	words”	to	
each	phrasal	node
§ Syntactic	vs.	semantic	

heads
§ Headship	not	in	(most)	

treebanks
§ Usually	use	head	rules,	

e.g.:
§ NP:

§ Take	leftmost	NP
§ Take	rightmost	N*
§ Take	rightmost	JJ
§ Take	right	child

§ VP:
§ Take	leftmost	VB*
§ Take	leftmost	VP
§ Take	left	child

Lexicalized	PCFGs?
§ Problem:	we	now	have	to	estimate	probabilities	like

§ Never	going	to	get	these	atomically	off	of	a	treebank

§ Solution:	break	up	derivation	into	smaller	steps

Lexical	Derivation	Steps
§ A	derivation	of	a	local	tree	[Collins	99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized	CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i h k h’ j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ

Quartic	Parsing
§ Turns	out,	you	can	do	(a	little)	better	[Eisner	99]

§ Gives	an	O(n4)	algorithm
§ Still	prohibitive	in	practice	if	not	pruned

Y[h] Z[h’]

X[h]

i h k h’ j

Y[h] Z

X[h]

i h k j

Pruning	with	Beams
§ The	Collins	parser	prunes	with	per-

cell	beams	[Collins	99]
§ Essentially,	run	the	O(n5) CKY
§ Remember	only	a	few	hypotheses	for	

each	span	<i,j>.
§ If	we	keep	K	hypotheses	at	each	span,	

then	we	do	at	most	O(nK2)	work	per	
span	(why?)

§ Keeps	things	more	or	less	cubic	(and	in	
practice	is	more	like	linear!)

§ Also:	certain	spans	are	forbidden	
entirely	on	the	basis	of	punctuation	
(crucial	for	speed)

Y[h] Z[h’]

X[h]

i h k h’ j

Pruning	with	a	PCFG

§ The	Charniak parser	prunes	using	a	two-pass,	coarse-
to-fine	approach	[Charniak 97+]
§ First,	parse	with	the	base	grammar
§ For	each	X:[i,j]	calculate	P(X|i,j,s)

§ This	isn’t	trivial,	and	there	are	clever	speed	ups
§ Second,	do	the	full	O(n5) CKY

§ Skip	any	X	:[i,j]	which	had	low	(say,	<	0.0001)	posterior
§ Avoids	almost	all	work	in	the	second	phase!

§ Charniak et	al	06:	can	use	more	passes
§ Petrov et	al	07:	can	use	many	more	passes

Results

§ Some	results
§ Collins	99	– 88.6	F1	(generative	lexical)
§ Charniak and	Johnson	05	– 89.7	/	91.3	F1	(generative	
lexical	/	reranked)

§ Petrov et	al	06	– 90.7	F1	(generative	unlexical)
§ McClosky et	al	06	– 92.1	F1	(gen	+	rerank +	self-train)

Latent	Variable	PCFGs

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]

The	Game	of	Designing	a	Grammar

§ Annotation	refines	base	treebank symbols	to	improve	
statistical	fit	of	the	grammar
§ Parent	annotation	[Johnson	’98]
§ Head	lexicalization [Collins	’99,	Charniak ’00]
§ Automatic	clustering?

The	Game	of	Designing	a	Grammar

Latent	Variable	Grammars

Parse Tree
Sentence Parameters

...

Derivations

Backward

Learning	Latent	Annotations

EM	algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

§ Brackets are known
§ Base categories are known
§ Only induce subcategories

Just	like	Forward-Backward	for	HMMs.
Forward

Refinement	of	the	DT	tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical	refinement

Hierarchical	Estimation	Results

74

76

78

80

82

84

86

88

90

100 300 500 700 900 1100 1300 1500 1700
Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement	of	the	,	tag
§ Splitting	all	categories	equally	is	wasteful:

Adaptive Splitting

§ Want to split complex categories more
§ Idea: split everything, roll back splits which

were least useful

Adaptive	Splitting	Results

Model F1
Previous 88.4
With 50% Merging 89.5

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number	of	Phrasal	Subcategories

Number	of	Lexical	Subcategories

0

10

20

30

40

50

60

70

NN
P JJ

NN
S NN VB
N RB

VB
G VB VB
D CD IN

VB
Z

VB
P DT

NN
PS CC JJ

R
JJ

S :
PR

P
PR

P$ M
D

RB
R

W
P

PO
S

PD
T

W
RB

-L
RB

- .
EX

W
P$

W
DT

-R
RB

- ''
FW RB

S TO
$

UH
, ``

SY
M RP LS #

Learned	Splits

§ Proper Nouns (NNP):

§ Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

§ Relative	adverbs	(RBR):

§ Cardinal	Numbers	(CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned	Splits

Final	Results	(Accuracy)

≤ 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient	Parsing	for
Hierarchical	Grammars

Coarse-to-Fine	Inference
§ Example:	PP	attachment

?????????

Hierarchical	Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …

Bracket	Posteriors

1621	min
111	min
35	min

15	min
(no	search	error)

Other	Syntactic	Models

Dependency	Parsing

§ Lexicalized	parsers	can	be	seen	as	producing	dependency	trees

§ Each	local	binary	tree	corresponds	to	an	attachment	in	the	dependency	
graph

questioned

lawyer witness

the the

Dependency	Parsing

§ Pure	dependency	parsing	is	only	cubic	[Eisner	99]

§ Some	work	on	non-projective dependencies
§ Common	in,	e.g.	Czech	parsing
§ Can	do	with	MST	algorithms	[McDonald	and	Pereira	05]

Y[h] Z[h’]

X[h]

i h k h’ j

h h’

h

h k h’

Shift-Reduce	Parsers

§ Another	way	to	derive	a	tree:

§ Parsing
§ No	useful	dynamic	programming	search
§ Can	still	use	beam	search	[Ratnaparkhi	97]

Tree	Insertion	Grammars

§ Rewrite	large	(possibly	lexicalized)	subtrees in	a	single	step

§ Formally,	a	tree-insertion	grammar
§ Derivational	ambiguity	whether	subtrees were	generated	atomically	

or	compositionally
§ Most	probable	parse	is	NP-complete

TIG:	Insertion

Tree-adjoining	grammars

§ Start	with	local	trees
§ Can	insert	structure	

with	adjunction	
operators

§ Mildly	context-
sensitive

§ Models	long-distance	
dependencies	
naturally

§ …	as	well	as	other	
weird	stuff	that	CFGs	
don’t	capture	well	
(e.g.	cross-serial	
dependencies)

TAG:	Long	Distance

CCG	Parsing

§ Combinatory	
Categorial	Grammar
§ Fully	(mono-)	

lexicalized	grammar
§ Categories	encode	

argument	sequences
§ Very	closely	related	

to	the	lambda	
calculus	(more	later)

§ Can	have	spurious	
ambiguities	(why?)

Empty	Elements

Empty	Elements

Empty	Elements
§ In	the	PTB,	three	kinds	of	empty	elements:

§ Null	items	(usually	complementizers)
§ Dislocation	(WH-traces,	topicalization,	relative	clause	and	
heavy	NP	extraposition)

§ Control	(raising,	passives,	control,	shared	argumentation)

§ Need	to	reconstruct	these	(and	resolve	any	
indexation)

Example:	English

Example:	German

Types	of	Empties

A	Pattern-Matching	Approach
§ [Johnson	02]

Pattern-Matching	Details
§ Something	like	transformation-based	learning
§ Extract	patterns

§ Details:	transitive	verb	marking,	auxiliaries
§ Details:	legal	subtrees

§ Rank	patterns
§ Pruning	ranking:	by	correct	/	match	rate
§ Application	priority:	by	depth

§ Pre-order	traversal
§ Greedy	match

Top	Patterns	Extracted

Results

Semantic	Roles

Semantic	Role	Labeling	(SRL)

§ Characterize	clauses	as	relations with	roles:

§ Says	more	than	which	NP	is	the	subject	(but	not	much	more):
§ Relations	like	subject are	syntactic,	relations	like	agent or	message are	

semantic
§ Typical	pipeline:

§ Parse,	then	label	roles
§ Almost	all	errors	locked	in	by	parser
§ Really,	SRL	is	quite	a	lot	easier	than	parsing

SRL	Example

PropBank	/	FrameNet

§ FrameNet:	roles	shared	between	verbs
§ PropBank:	each	verb	has	its	own	roles
§ PropBank more	used,	because	it’s	layered	over	the	treebank (and	so	has	

greater	coverage,	plus	parses)
§ Note:	some	linguistic	theories	postulate	fewer	roles	than	FrameNet (e.g.	

5-20	total:	agent,	patient,	instrument,	etc.)

PropBank	Example

PropBank	Example

PropBank	Example

Shared	Arguments

Path	Features

Results

§ Features:
§ Path	from	target	to	filler
§ Filler’s	syntactic	type,	headword,	case
§ Target’s	identity
§ Sentence	voice,	etc.
§ Lots	of	other	second-order	features

§ Gold	vs	parsed	source	trees

§ SRL	is	fairly	easy	on	gold	trees

§ Harder	on	automatic	parses

Parse	Reranking

§ Assume	the	number	of	parses	is	very	small
§ We	can	represent	each	parse	T	as	a	feature	vector	j(T)

§ Typically,	all	local	rules	are	features
§ Also	non-local	features,	like	how	right-branching	the	overall	tree	is
§ [Charniak and	Johnson	05]	gives	a	rich	set	of	features

K-Best	Parsing [Huang and Chiang 05,
Pauls, Klein, Quirk 10]

