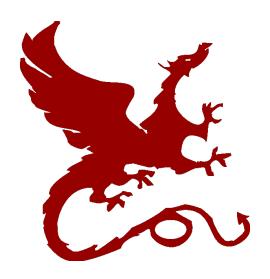
Algorithms for NLP



Parsing VI

Taylor Berg-Kirkpatrick – CMU

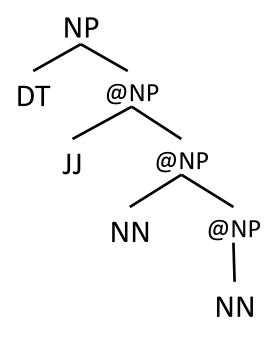
Slides: Dan Klein – UC Berkeley

P1 Shout-outs

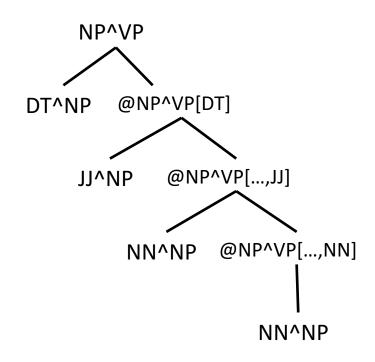
- Saksham Singhal -- implemented pseudo-tries. Used implicit caching (stored the most frequent n-grams on top of hash tables) and explicit caching.
- Soumya Wadhwa, Tejas Nama -- approximated by ignoring all trigrams with count 1.
 That dropped BLEU score by less than 0.1 only but freed half the memory!
- Craig Stewart -- rehash annealing idea. Made resizing factor and load factor change with every rehash to converge to 0.9 load factor to minimize wasted space.
- Griffin Thomas Adams -- Built a "waterfall" tiered cache system
- Dean Alderucci -- Built a class to pack data types of arbitrary size into an array of longs.
 Built a custom implementation of log that ran faster.
- Robin Jonathan Algayres Context trie!
- Raghuram Mandyam Annasamy -- Used database inspired sharding technique on keys
- Xianyang Chen -- Compressed hash table and did smarter binary search by indexing chunks with the same last word
- Aldrian Obaja -- Implemented NestedMap, achieving 792 MB of memory.
- Other things many people did -- LRU caching, packing multiple values (counts and context fertilites) into a single long, binary search instead of hash table.

Grammar Projections

Coarse Grammar



Fine Grammar



 $NP \rightarrow DT @NP$

 $NP^{VP} \rightarrow DT^{NP} @NP^{VP}[DT]$

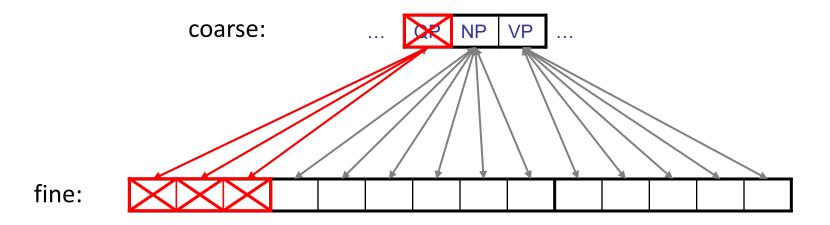
Note: X-Bar Grammars are projections with rules like $XP \rightarrow Y @X$ or $XP \rightarrow @X Y$ or $@X \rightarrow X$

Efficient Parsing for Structural Annotation

Coarse-to-Fine Pruning

$$P(X|i,j,S)$$
 < threshold

E.g. consider the span 5 to 12:

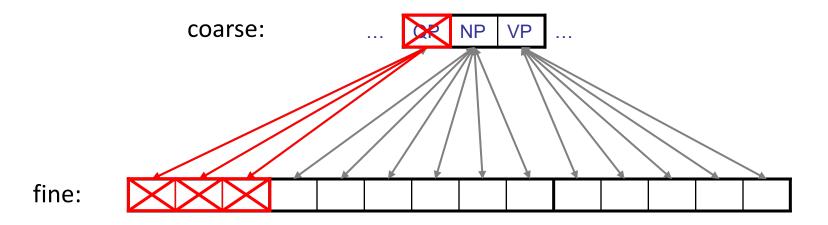


Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\alpha(X, i, j) \cdot \beta(X, i, j)}{\alpha(\text{root}, 0, n)} < threshold$$

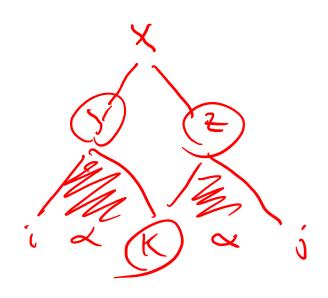
E.g. consider the span 5 to 12:



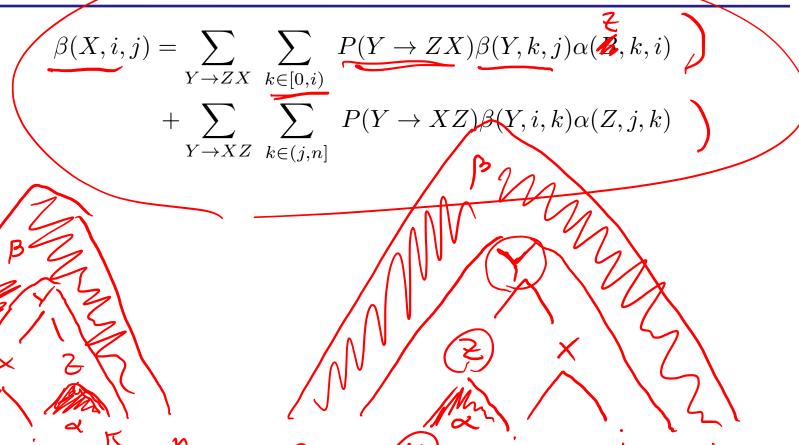
Computing Marginals

$$\alpha(X,i,j) = \sum_{X \to YZ} \sum_{k \in (i,j)} P(X \to YZ) \alpha(Y,i,k) \alpha(Z,k,j)$$





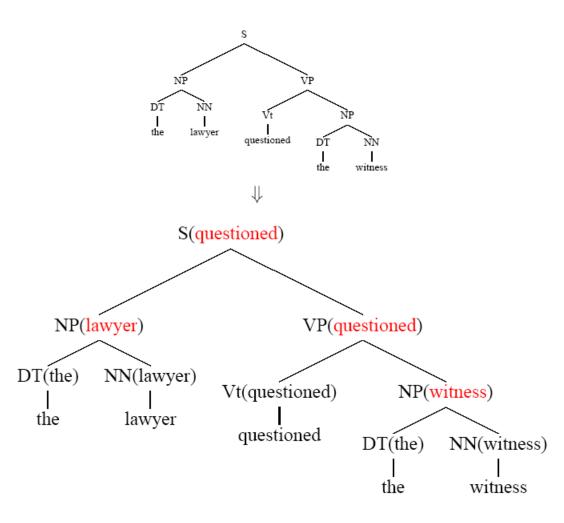
Computing Marginals



Efficient Parsing for Lexical Grammars

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



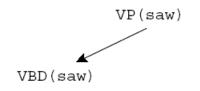
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

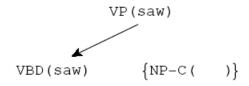
- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

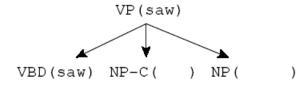
A derivation of a local tree [Collins 99]



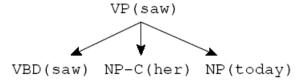
Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



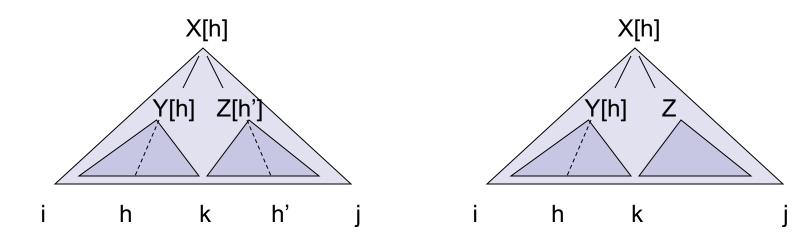
Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                           X[h]
                                 NP[her]
               (VP->VBD •) [saw]
                                                         Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                            k
                                                                   h'
     return tagScore(X,s[i])
  else
     return
       max max score (X[h] \rightarrow Y[h] Z[h']) *
          k,h',X->YZ
                 bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZ
                 bestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```


Quartic Parsing

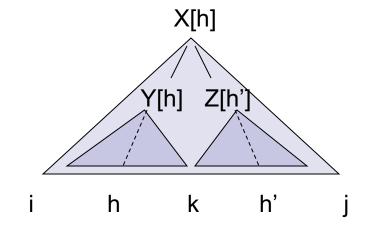
Turns out, you can do (a little) better [Eisner 99]



- Gives an O(n⁴) algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic (and in practice is more like linear!)



 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior</p>
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

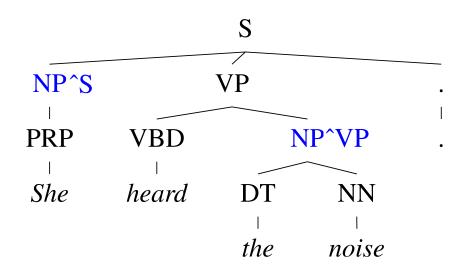
Results

Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

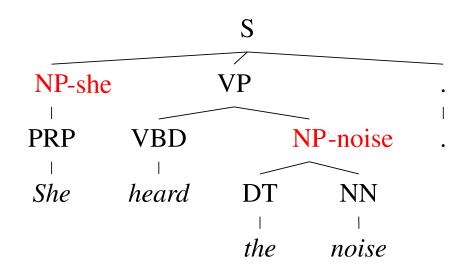
Latent Variable PCFGs

The Game of Designing a Grammar



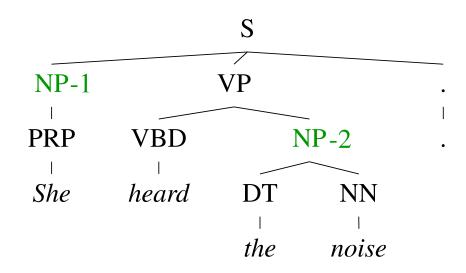
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

The Game of Designing a Grammar



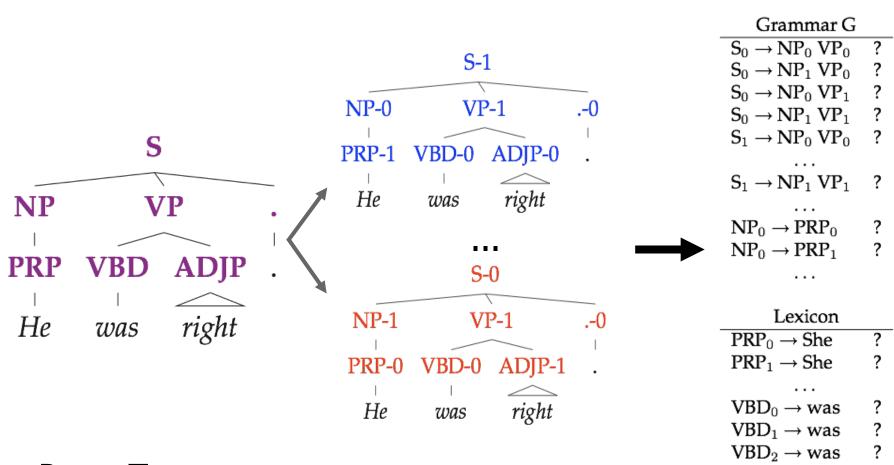
- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars



Parse Tree TSentence w

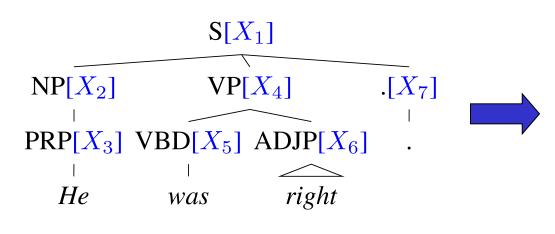
Derivations t:T

Parameters θ

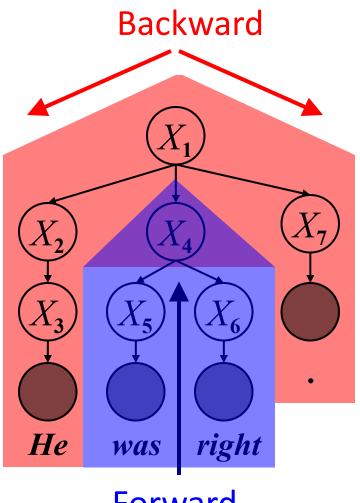
Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

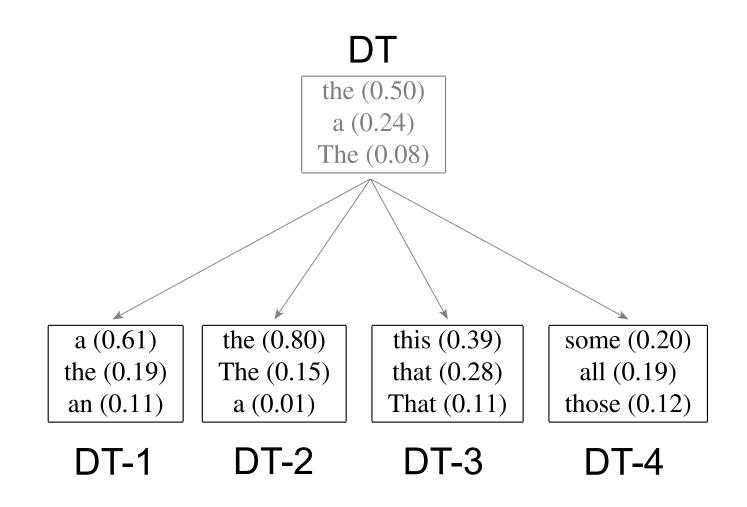


Just like Forward-Backward for HMMs.

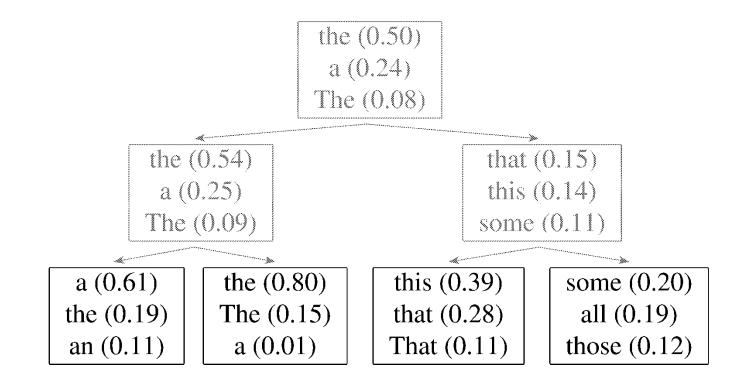


Forward

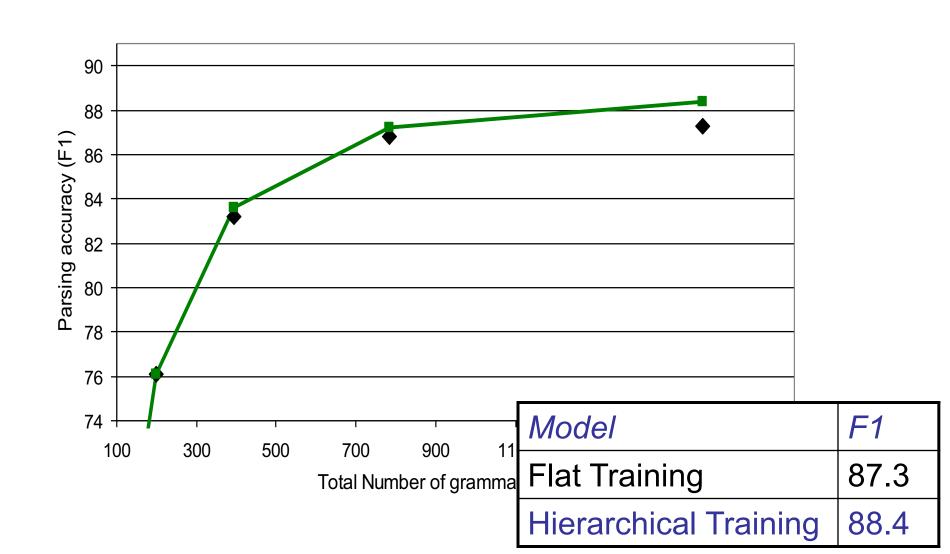
Refinement of the DT tag



Hierarchical refinement

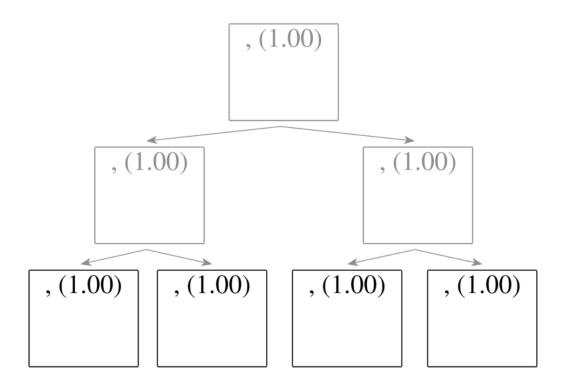


Hierarchical Estimation Results



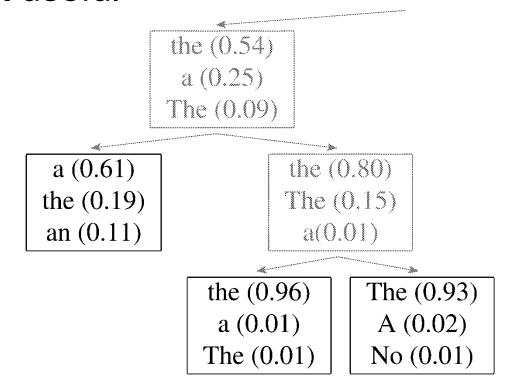
Refinement of the, tag

Splitting all categories equally is wasteful:

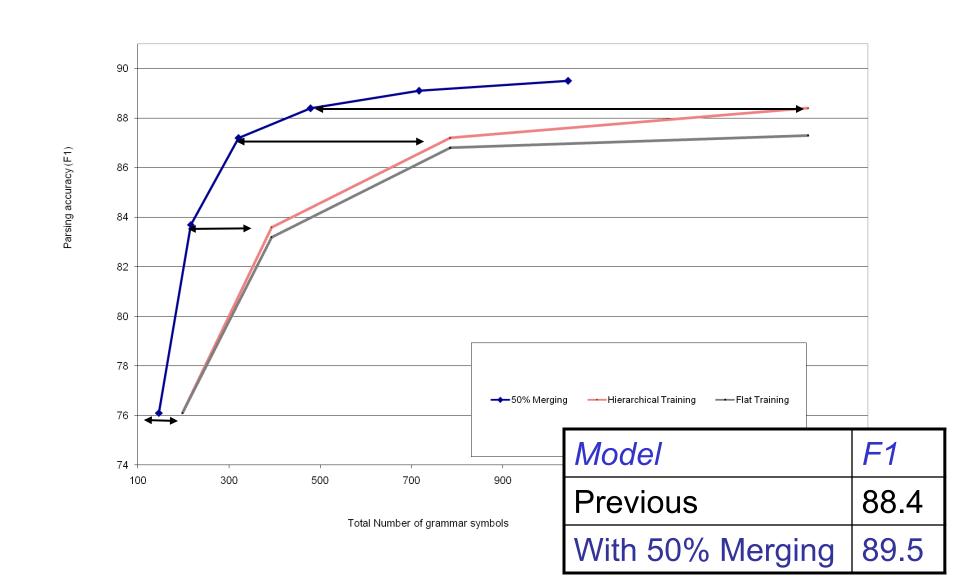


Adaptive Splitting

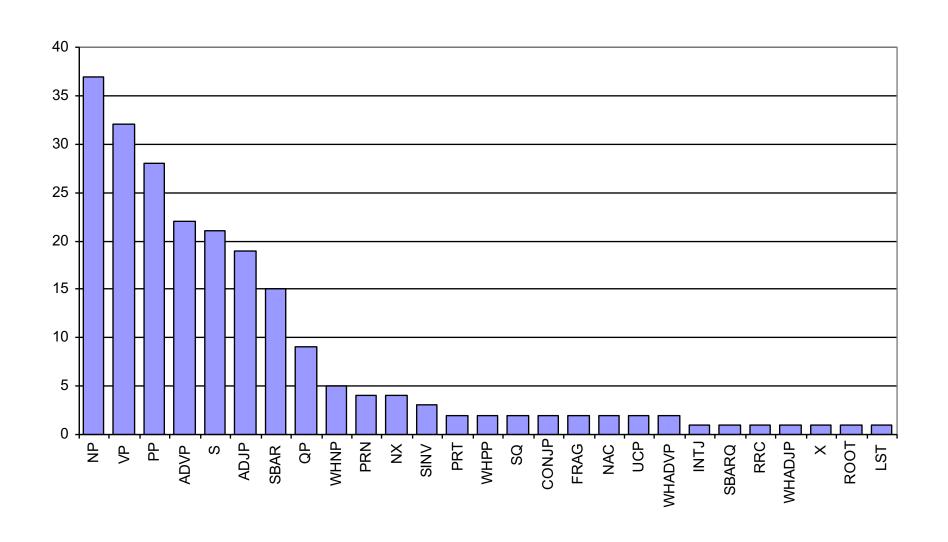
- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



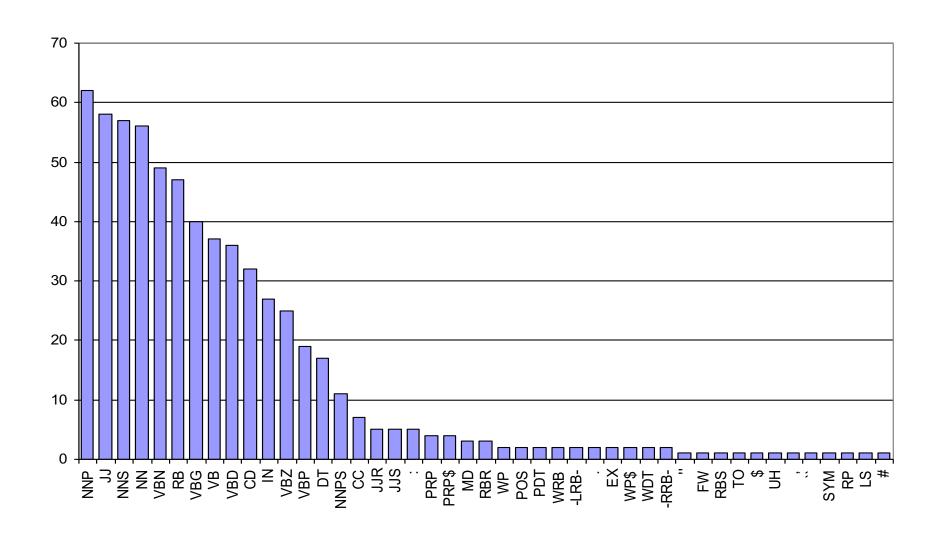
Adaptive Splitting Results



Number of Phrasal Subcategories



Number of Lexical Subcategories



Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco Stre	

Personal pronouns (PRP):

PRP-0	lt	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

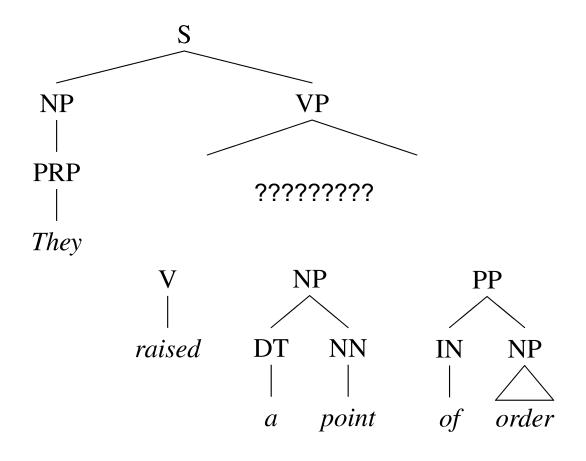
		≤ 40 words F1	all F1
□	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
E	Split / Merge	80.8	80.1
<u>C</u>	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

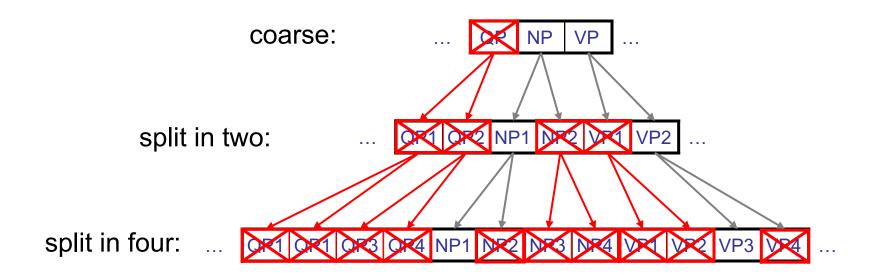
Efficient Parsing for Hierarchical Grammars

Coarse-to-Fine Inference

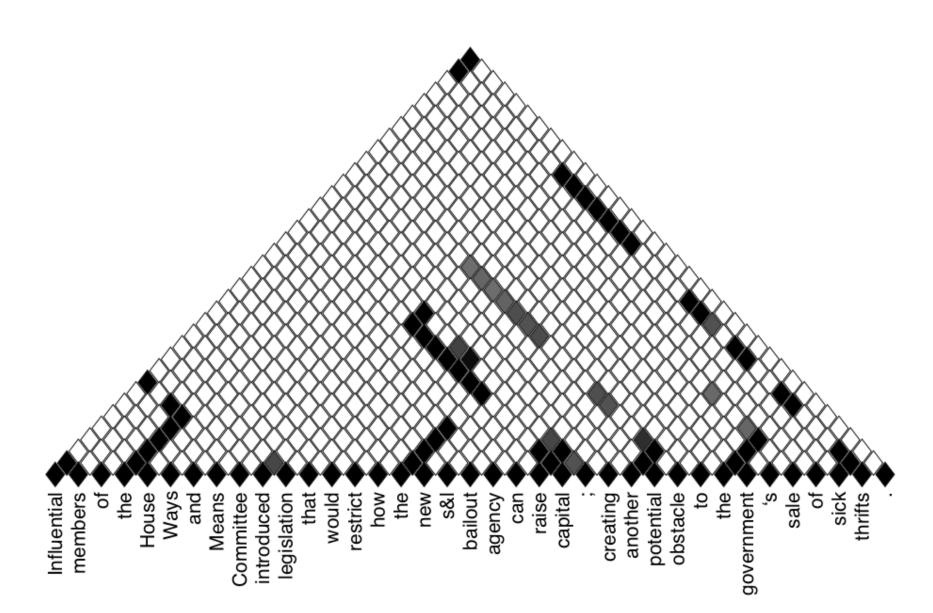
Example: PP attachment



Hierarchical Pruning



Bracket Posteriors

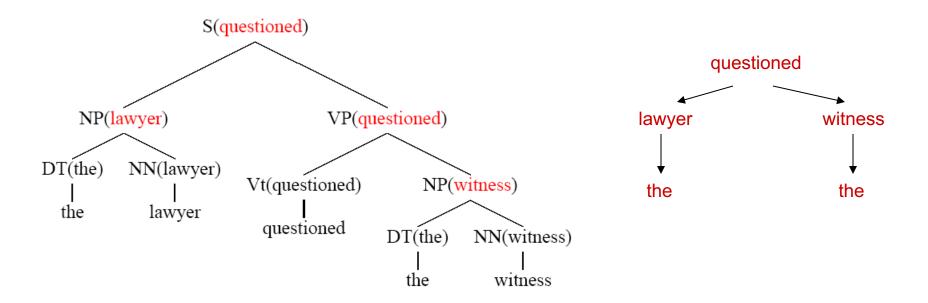


1621 min **111** min **35** min 15 min (no search error)

Other Syntactic Models

Dependency Parsing

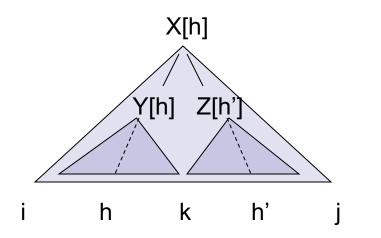
Lexicalized parsers can be seen as producing dependency trees

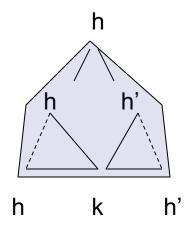


 Each local binary tree corresponds to an attachment in the dependency graph

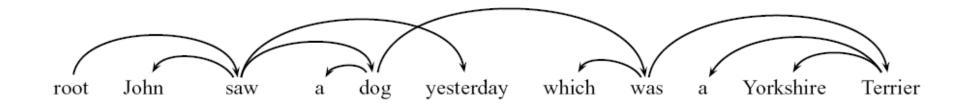
Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]



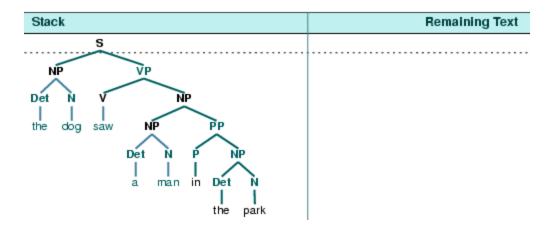


- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]



Shift-Reduce Parsers

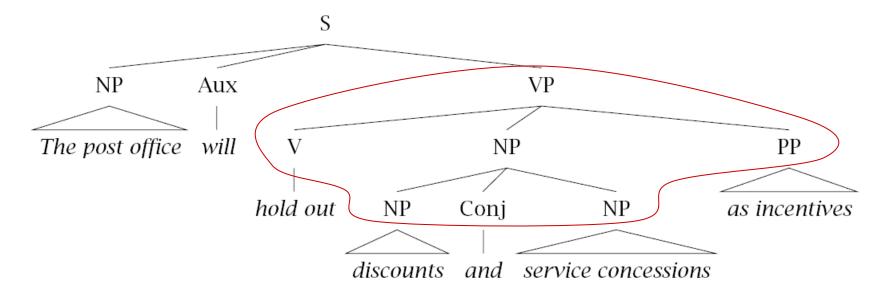
• Another way to derive a tree:



- Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]

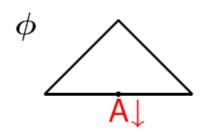
Tree Insertion Grammars

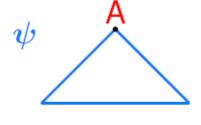
Rewrite large (possibly lexicalized) subtrees in a single step

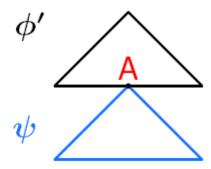


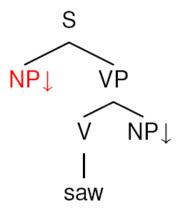
- Formally, a *tree-insertion grammar*
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

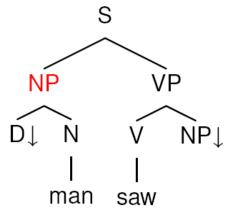
TIG: Insertion





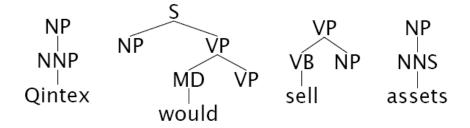


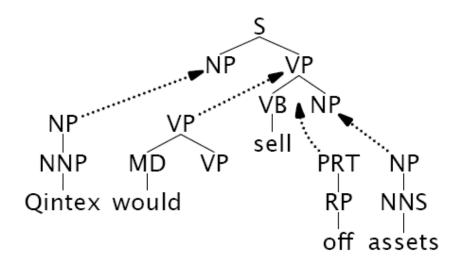




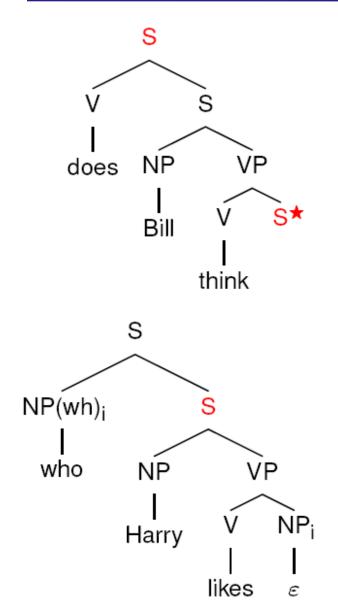
Tree-adjoining grammars

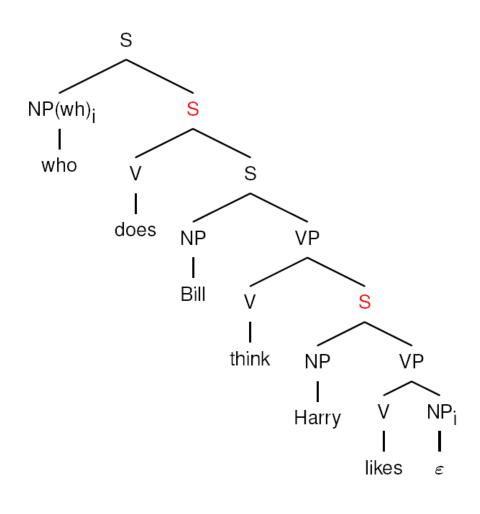
- Start with local trees
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)





TAG: Long Distance





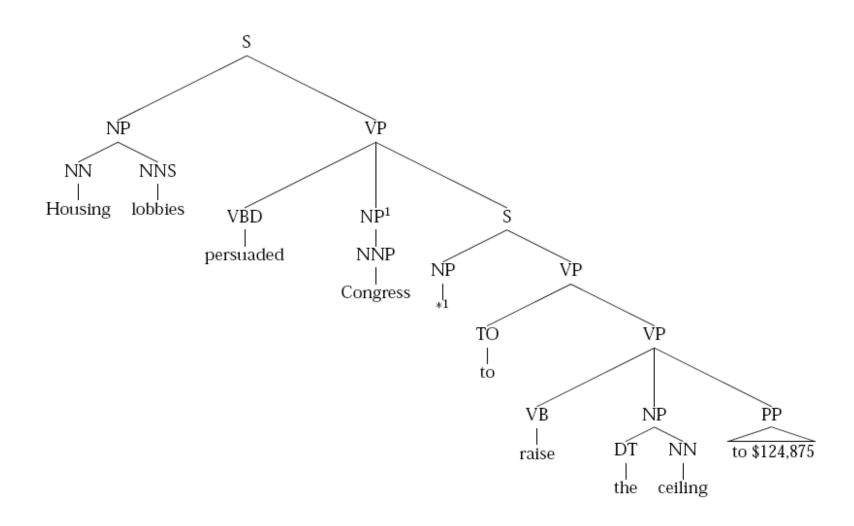
CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$

Empty Elements

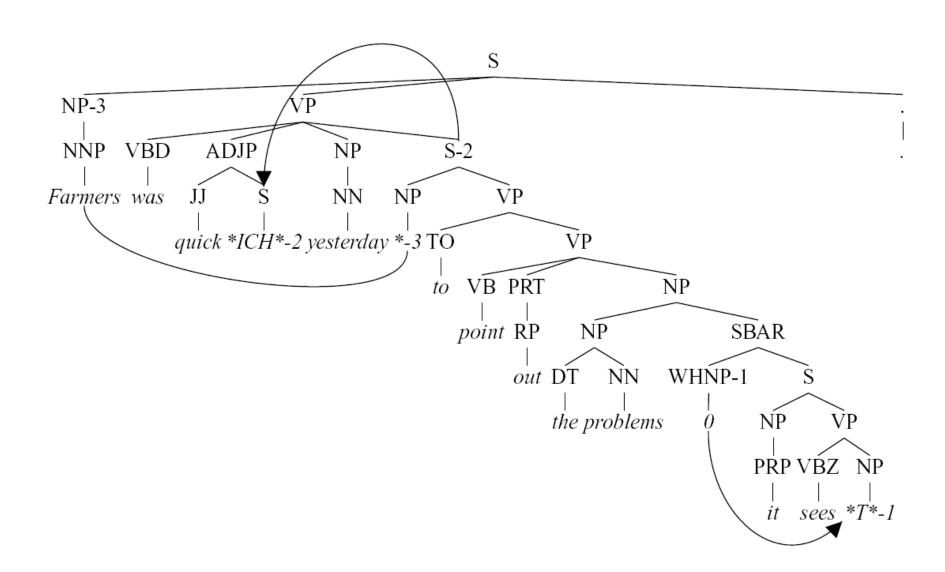
Empty Elements



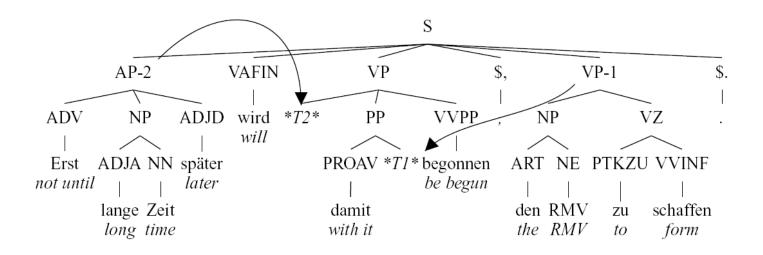
Empty Elements

- In the PTB, three kinds of empty elements:
 - Null items (usually complementizers)
 - Dislocation (WH-traces, topicalization, relative clause and heavy NP extraposition)
 - Control (raising, passives, control, shared argumentation)
- Need to reconstruct these (and resolve any indexation)

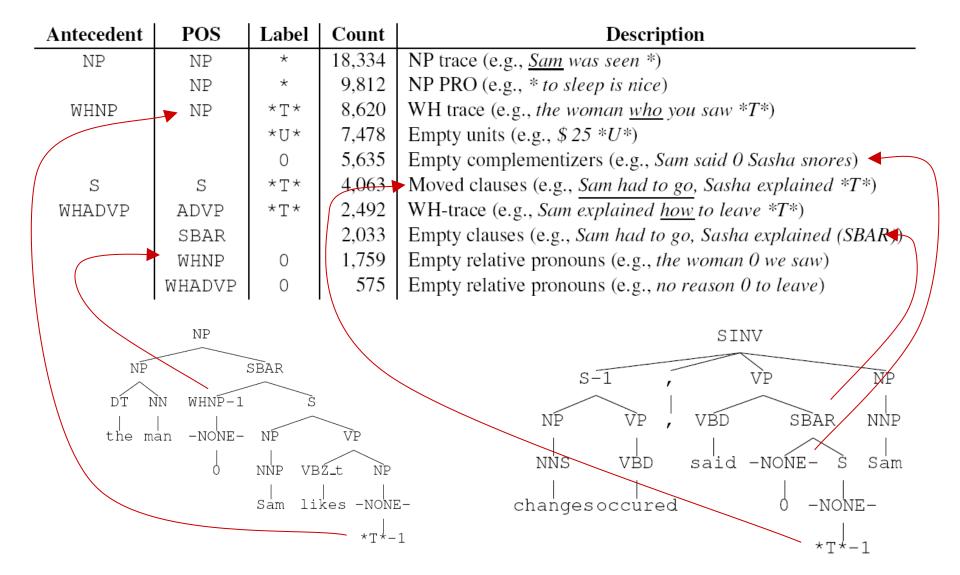
Example: English



Example: German

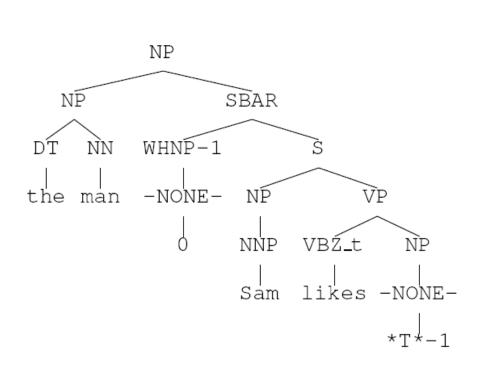


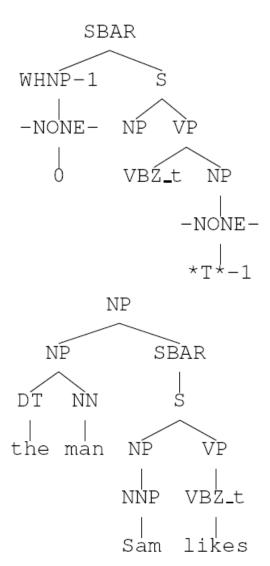
Types of Empties



A Pattern-Matching Approach

[Johnson 02]





Pattern-Matching Details

- Something like transformation-based learning
- Extract patterns
 - Details: transitive verb marking, auxiliaries
 - Details: legal subtrees
- Rank patterns
 - Pruning ranking: by correct / match rate
 - Application priority: by depth
- Pre-order traversal
- Greedy match

Top Patterns Extracted

```
Count
      Match
                                            Pattern
 5816
        6223
              (S (NP (-NONE- *)) VP)
 5605
        7895
              (SBAR (-NONE- 0) S)
 5312
        5338
              (SBAR WHNP-1 (S (NP (-NONE-*T*-1)) VP))
 4434
        5217
              (NP OP (-NONE-*U*))
 1682
        1682
              (NP \ \$ \ CD \ (-NONE- *U*))
 1327
        1593
              (VP VBN_t (NP (-NONE- *)) PP)
  700
         700
              (ADJP OP (-NONE- *U*))
  662
        1219
              (SBAR (WHNP-1 (-NONE- 0)) (S (NP (-NONE- *T*-1)) VP))
  618
         635
              (S S-1 , NP (VP VBD (SBAR (-NONE- 0) (S (-NONE- <math>*T*-1)))) .)
  499
         512
              (SINV '' S-1 , '' (VP VBZ (S (-NONE- *T*-1))) NP .)
  361
         369
              (SINV `` S-1 , '' (VP VBD (S (-NONE- *T*-1))) NP .)
  352
         320
              (S NP-1 (VP VBZ (S (NP (-NONE- *-1)) VP)))
  346
         273
              (S NP-1 (VP AUX (VP VBN_t (NP (-NONE- *-1)) PP)))
  322
         467
              (VP VBD_t (NP (-NONE- *)) PP)
  269
         275
              (S '' S-1 , '' NP (VP VBD (S (-NONE- *T*-1))) .)
```


Results

Empty node		Section 23			Parser output		
POS	Label	P	R	f	P	R	f
(Overall)		0.93	0.83	0.88	0.85	0.74	0.79
NP	*	0.95	0.87	0.91	0.86	0.79	0.82
NP	*T*	0.93	0.88	0.91	0.85	0.77	0.81
	0	0.94	0.99	0.96	0.86	0.89	0.88
	U	0.92	0.98	0.95	0.87	0.96	0.92
S	*T*	0.98	0.83	0.90	0.97	0.81	0.88
ADVP	*T*	0.91	0.52	0.66	0.84	0.42	0.56
SBAR		0.90	0.63	0.74	0.88	0.58	0.70
WHNP	0	0.75	0.79	0.77	0.48	0.46	0.47

Semantic Roles

Semantic Role Labeling (SRL)

Characterize clauses as relations with roles:

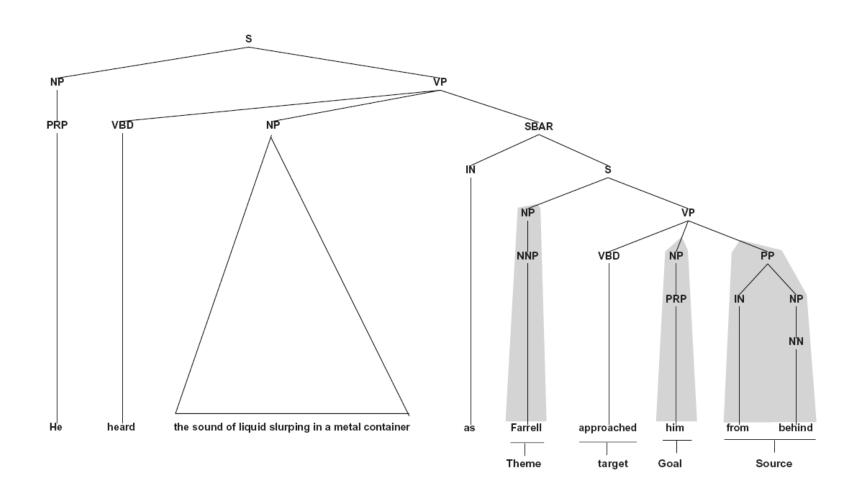
[$_{Judge}$ She] blames [$_{Evaluee}$ the Government] [$_{Reason}$ for failing to do enough to help] .

Holman would characterise this as **blaming** [$_{Evaluee}$ the poor] .

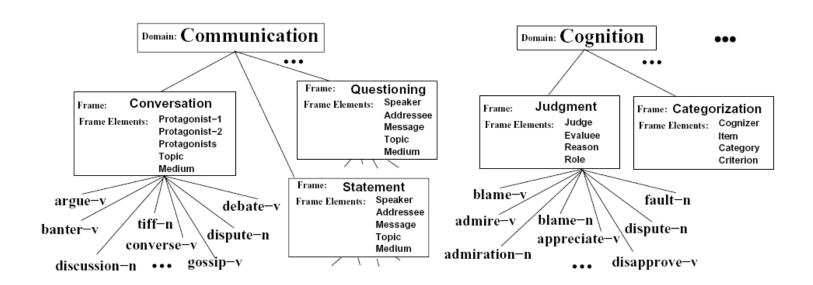
The letter quotes Black as saying that [Judge] white and Navajo ranchers Jeta misrepresent their livestock losses and Jeta blame Jeta everything Jeta Jeta on coyotes Jeta.

- Says more than which NP is the subject (but not much more):
- Relations like subject are syntactic, relations like agent or message are semantic
- Typical pipeline:
 - Parse, then label roles
 - Almost all errors locked in by parser
 - Really, SRL is quite a lot easier than parsing

SRL Example



PropBank / FrameNet



- FrameNet: roles shared between verbs
- PropBank: each verb has its own roles
- PropBank more used, because it's layered over the treebank (and so has greater coverage, plus parses)
- Note: some linguistic theories postulate fewer roles than FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

PropBank Example

fall.01 sense: move downward

roles: Arg1: thing falling

Arg2: extent, distance fallen

Arg3: start point Arg4: end point

Sales fell to \$251.2 million from \$278.7 million.

arg1: Sales rel: fell

arg4: to \$251.2 million

arg3: from \$278.7 million

PropBank Example

rotate.02 sense: shift from one thing to another

roles: Arg0: causer of shift

Arg1: thing being changed

Arg2: old thing Arg3: new thing

Many of Wednesday's winners were losers yesterday as investors quickly took profits and rotated their buying to other issues, traders said. (wsj_1723)

arg0: investors rel: rotated

arg1: their buying arg3: to other issues

PropBank Example

aim.01 sense: intend, plan

roles: Arg0: aimer, planner

Arg1: plan, intent

The Central Council of Church Bell Ringers aims *trace* to improve relations with vicars. (wsj_0089)

arg0: The Central Council of Church Bell Ringers

rel: aims

arg1: *trace* to improve relations with vicars

aim.02 sense: point (weapon) at

roles: Arg0: aimer

Arg1: weapon, etc.

Arg2: target

Banks have been aiming packages at the elderly.

arg0: Banks

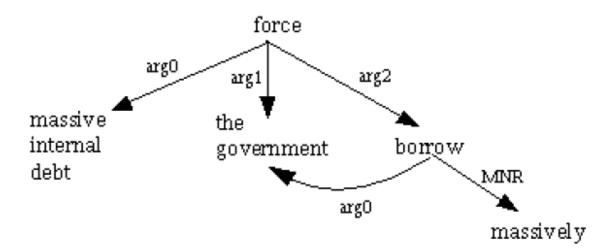
rel: aiming

arg1: packages

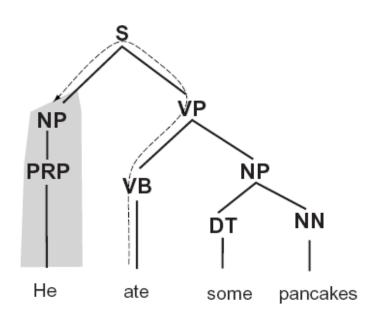
arg2: at the elderly

Shared Arguments

```
(NP-SBJ (JJ massive) (JJ internal) (NN debt) )
(VP (VBZ has)
(VP (VBN forced)
(S
(NP-SBJ-1 (DT the) (NN government) )
(VP
(VP (TO to)
(VP (VB borrow)
(ADVP-MNR (RB massively) )...
```



Path Features



Path	Description
VB↑VP↓PP	PP argument/adjunct
VB↑VP↑S↓NP	subject
VB↑VP↓NP	object
VB↑VP↑VP↑S↓NP	subject (embedded VP)
VB↑VP↓ADVP	adverbial adjunct
$NN\uparrow NP\uparrow NP\downarrow PP$	prepositional complement of noun

Results

Features:

- Path from target to filler
- Filler's syntactic type, headword, case
- Target's identity
- Sentence voice, etc.
- Lots of other second-order features

Gold vs parsed source trees

SRL is fairly easy on gold trees

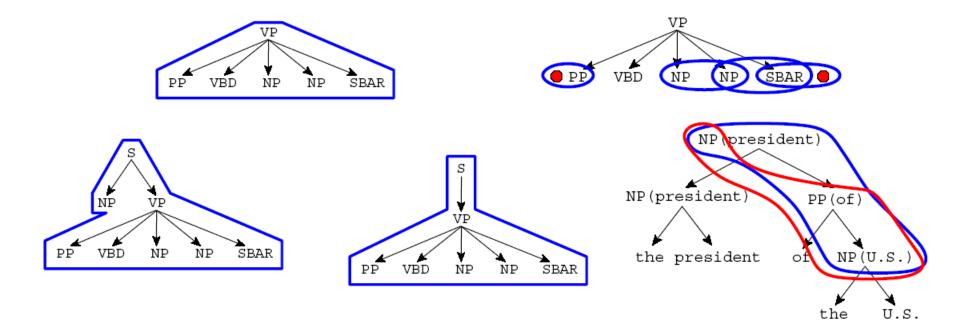
Co	RE	ARGM		
F1	Acc.	F1	Acc.	
92.2	80.7	89.9	71.8	

Harder on automatic parses

Co	RE	ARGM		
F1	Acc.	F1	Acc.	
84.1	66.5	81.4	55.6	

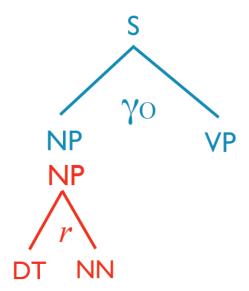
Parse Reranking

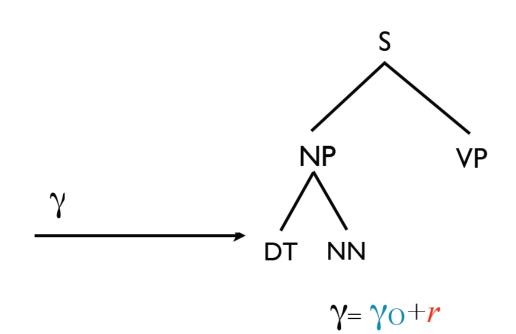
- Assume the number of parses is very small
- We can represent each parse T as a feature vector φ(T)
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features



K-Best Parsing

[Huang and Chiang 05, Pauls, Klein, Quirk 10]





-